
1

Improved Linear Programming Decoding using
Frustrated Cycles

Shrinivas Kudekar∗, Jason K. Johnson∗ and Misha Chertkov∗†
∗ Center for Nonlinear Studies

& Theoretical Division T-4
Los Alamos National Laboratory, Los Alamos NM, USA.

Email: {skudekar, jasonj, chertkov}@lanl.gov
† New Mexico Consortium, Los Alamos, NM, USA.

Abstract— We consider transmission over a binary-input addi-
tive white Gaussian noise channel using low-density parity-check
codes. One of the most popular techniques for decoding low-
density parity-check codes is the linear programming decoder.
In general, the linear programming decoder is suboptimal. I.e.,
the word error rate is higher than the optimal, maximum a
posteriori decoder.

In this paper we present a systematic approach to enhance the
linear program decoder. More precisely, in the cases where the
linear program outputs a fractional solution, we give a simple
algorithm to identify frustrated cycles which cause the output of
the linear program to be fractional. Then adding these cycles,
adaptively to the basic linear program, we show improved word
error rate performance.

I. INTRODUCTION

We consider transmission over a binary-input additive white
Gaussian noise channel (BIAWGNC) using low-density parity-
check (LDPC) codes. The two most fundamental decoders in
this context are the belief propagation (BP) decoder [1] and
the linear programming (LP) decoder [2]. In this paper we are
interested in the performance of the LP decoder. There is an
extensive literature on analysis and design of the LP decoder
for LDPC codes [2]–[5]. As is well known, LP decoders have
the advantage that they provide the ML certificate. This means
that, if the LP decoder outputs an integer solution, then it must
be the maximum likelihood (ML) codeword. Thus in this case
the LP behaves as an optimal decoder. One can also say that
in this case there is no duality gap.

However, it is also known that in general the LP decoder is
suboptimal [2]. I.e., there exists channel noise realizations such
that the LP decoder outputs a fractional solution, known as
pseudocodewords [4], but still there exists a unique codeword
which minimizes the objective function. This implies that the
LP decoder is not successful in finding the ML codeword.
As a result, there is a gap between the performance of the
LP decoder and the ML decoder. Hence it is an interesting
question to understand what causes the LP decoder to fail and
further if there exists methods to improve the LP decoder. It is
well known that adding redundant parity-check nodes to the
Tanner graph of the LDPC code improves the LP decoder [2],
[6]. However it is not desirable to add all such constraints as
it will slow down the LP decoder considerably.

In this work we propose an approach to adaptively add
constraints to the LP decoder which, simultaneously, reduce

the duality gap and are tractable (i.e., the number of such
additional constraints are small and also each constraint in-
volves only a small number of variables). Such approaches,
which try to get rid off the fractional solution (or make the LP
polytope tighter), have been used to improve the LP decoding
of LDPC codes [2], [6]–[11]. The new LP decoder which we
propose, identifies frustrated cycles (see Section III-A) when
the basic LP produces a fractional solution. We show that these
frustrated cycles are the cause of inconsistency in the solution.
Then we adaptively add them, as constraints, to the basic LP
decoder. This enables us to recover the transmitted codeword
in many cases. We show empirically that the new LP decoder
has an improved word error rate performance. Furthermore,
the new LP decoder also has tractable complexity.

II. CHANNEL MODEL, MAXIMUM LIKELIHOOD DECODER
AND LINEAR PROGRAMMING DECODER

A. Setup and Nomenclature

We consider transmission over a BIAWGNC with noise
distribution given by N (0, σ2). We use blocklength n LDPC
encoding and denote x = {x1, x2, . . . , xn} as the transmit-
ted codeword. The input codebit takes value in {0, 1}. The
received message is denoted by y ∈ Rn. We will use the log-
likelihood ratio (LLR) to represent the channel observations.
More precisely, we have li = log

py|x(yi | 0)
py|x(yi | 1)

, where py|x(y|x) is
the channel transition pdf. Let l represent the vector of LLRs.

The LDPC code is represented by the usual Tanner graph
representation[1]. Throughout the paper we will use (dl, dr)-
regular LDPC code ensembles to demonstrate our approach.
The design rate of the LDPC code is given by 1 − dl/dr.
In the experiments we perform later, we consider the random
(3, 4)-regular LDPC code ensemble and the fixed 155-Tanner
code [12] which has degree 3 variable nodes and degree 5
check nodes. We use V to denote the set of n variable nodes
or codebits and C to denote the set of m parity check nodes.
A generic variable node and a check node is denoted by the
letter i and c respectively. Let C represent the code (or the set
of codewords).

B. ML Decoder

The ML decoder can be written as the following combi-
natorial optimization problem [2], minx∈C

∑n
i=1 lixi. This is

2

also the Integer Program (IP) representing the ML decoding.

C. Basic Linear Programming Decoder

For every check node c ∈ C, let xc = {xi | i ∈ c}. We also
use c \ i to denote the set of all variable nodes contained in
check node c except for the variable node i. The above IP can
be relaxed to

min
b

n∑
i=1

∑
xi∈{0,1}

lixibi(xi)

s.t. ∀i ∈ V :
∑

xi∈{0,1}

bi(xi) = 1,

∀c ∈ C, ∀i ∈ c, xi ∈ {0, 1} : bi(xi) =
∑
xc\i

bc(xi, xc\i)

∀c ∈ C, ∀xc s.t.
∑
i∈c

xi = 1, bc(xc) = 0, (local codeword)

0 ≤ bi(xi) ≤ 1, ∀i ∈ V, 0 ≤ bc(xc) ≤ 1, ∀c ∈ C,

which constitutes the standard LP decoder [2]. Here bi(xi)
represents the “belief” of the variable node i and bc(xc)
represents the “belief” associated to the check node c. In the
sequel, we will also say that bi(xi) is the belief associated
to the singleton clique i and bc(xc) is the belief associated
to a higher order clique1. Also, b represents the vector of
all the variable node and check node beliefs. Note that the
objective function represents the “cost” of decoding a bit to 0.
This cost is reduced if the corresponding LLR is negative. The
second condition imposed by the LP above is the consistency
condition. In the third condition, the sum is over GF(2).

III. MAIN RESULTS: IMPROVED LP DECODING

As mentioned earlier, our approach is to adaptively add con-
straints to the LP which decrease the duality gap. Furthermore,
we want the number of such additional constraints to be small
and also each constraint to involve only a small number of
variables.

There are many existing approaches to improve the LP
decoder [2], [6]–[11]. In [2] an improved LP decoder based
on “lift-and-project” method was introduced. In [8], the LP
is enhanced by eliminating the facet containing the fractional
solution. In [6], [7], extra constraints are added by combining
parity checks which correspond to violated constraints to
improve the LP performance. In [9] a mixed-integer LP was
introduced by fixing the most “uncertain” bit of the pseu-
docodeword. In [10] an adaptive LP decoder was introduced
based on loop calculus. Critical loops were identified and
then broken by fixing bits on the loop. In [11] a non-
linear programming decoder was designed for decoding LDPC
codes.

A. LP Decoders using Frustrated Subgraphs

Although our approach is in the same spirit as aforemen-
tioned works, the main ideas are very different and have their

1In a clique, every node is connected to every other node. The LPs given
in this paper always have beliefs associated to cliques.

origins in [13] and [14]. Similar ideas have been independently
used in [15], [16]. Before we describe the basic idea let us first
define the notion of a frustrated graph.

Definition 1 (Frustrated Graph): Consider a constraint sat-
isfaction problem (CSP) defined on n binary (boolean) vari-
ables, x, and m constraint nodes (each of which constraints
a small set of variables). For each constraint c there are only
certain configurations of xc ∈ {0, 1}|c| which satisfy it. Then,
we say that the graph is frustrated if and only if there is
no assignment of x which satisfies all m constraint nodes
simultaneously. �

Let us now define a CSP for our set-up.
Definition 2 (CSP obtained by the LP Solution): Assume

that the output of LP, b, is a fractional solution, i.e., we have
a duality gap. For every clique c (with size at least two),
the set of xc which satisfy the clique are those for which
bc(xc) > 0. In other words, the set of xc satisfying the clique
c, correspond to the support set of bc(xc). Consequently,
the CSP is given by the n (binary) variables, {xi}ni=1 and
the set of cliques c (constraining the variables as described
previously). �

We now show that if the output of the LP has a frustrated
subgraph, then it must have a duality gap, i.e., the solution
must be fractional.

Lemma 3: If there exists a frustrated subgraph, then there
is a duality gap.

Proof: Indeed, suppose on the contrary there was no
duality gap, i.e, output of the LP is integral. Thus for every
clique c (singleton or higher order), bc(xc) = 1 for some xc ∈
{0, 1}|c| and bc(xc) = 0 for the rest. Consider any subset of the
cliques, C = {c1, c2, . . . , cr}. Let x∗ci be such that bci(x

∗
ci) =

1.0. We claim that ∪ri=1x
∗
ci satisfies the CSP represented by

C. Indeed, this follows from the consistency imposed by the
LP. Thus no subgraph is frustrated.

Thus our strategy is as follows: first identify a frustrated
subgraph from the output of the basic LP; if we add this
frustrated subgraph as a constraint in our LP, then we ensure
that this subgraph cannot be frustrated. In our experiments
we see that, in many cases, adding the frustrated subgraphs
eliminates the duality gap.

To ensure that the subgraph we add as a constraint to the
LP becomes consistent (or is not frustrated), we need to add
all its maximal cliques and their intersections to the LP. More
precisely, we add the maximal cliques of the junction tree2 of
that subgraph as extra beliefs to the LP.

The main challenge that remains is to find a frustrated
subgraph in tractable time. In general, it is hard to find an
arbitrary subgraph which is frustrated. We also remark that in
[13] it was found empirically that the random field ising model
could typically be solved (duality gap eliminated) by adding
frustrated cycles arising in the LP solution. It is also known
from Barahona’s work (see references within [15]) that adding
cycles is sufficient to solve the zero-field planar ising model.
Hence as a first step, we focus on finding frustrated cycles of

2See [13] for a discussion on Junction trees. It can be shown that running LP
on the junction tree of a graph is optimal (equal to the original combinatorial
optimization problem). If frustrated subgraph is a cycle then we just add all
the triangles which chordalizes the cycle.

3

the graph. Frustrated cycles and a procedure to find them are
described in the next section. The procedure is tractable and
uses the implication graph method (to solve 2SAT problem)
of [13], [17]. For details see Appendix B in [13].

B. Implication Graph and Frustrated Cycles

For every clique c, consider all the two-projections
of its belief. I.e., for every bc(xc), consider all the
bij(xi, xj) ∀ i, j ∈ c. These are obtained by summing
out the other variables. We construct the implication graph as
follows. In the implication graph each node i is present as i+
(for xi = 0) and i− (for xi = 1). Thus, the implication graph
has a total of 2n nodes. There is a directed edge present
between i and j which represents the logical implication
obtained from bij(xi, xj). Let us explain this in more details.
To generate the logical implication, consider the set T of
configurations of (xi, xj) which render bij(xi, xj) > 0 and
can introduce inconsistency. Thus, T is any of the following
(01, 10), (01, 10, 11), (01, 10, 00), (00, 11), (00, 11, 10) and
(00, 11, 01). Indeed, moments thought shows that other
configurations, e.g., (00, 01, 10, 11), are not restrictive
and hence do not form any logical implication. Also,
nodes which have integer beliefs are present as isolated
nodes in the graph and do not have any edges entering
or leaving it. Draw the directed edges using this
T . E.g., suppose that LP outputs beliefs such that
bij(0, 1) > 0, bij(1, 0) > 0, bij(1, 1) > 0, bi,j(0, 0) = 0
then T = (01, 10, 11). This implies a directed edge from
i+ → j− and j+ → i−, because if xi = 0 then we must have
xj = 1 and if xj = 0 then xi = 1. In figure 1 we illustrate
all possible implications which form the building blocks for
constructing the implication graph.

xi xj

0 0

1 1

i+

i−

j+

j−

i+

i−

j+

j−

i+

i−

j+

j−

i+

i−

j+

j−

0 1

1 0

0 0
1 0
0 1

1 1
1 0
0 1

() ()
0 0
1 1
0 1

0 0
1 1
1 0

() ()

Fig. 1. Figure shows all possible implications between xi and xj . These
are used as basic building blocks to create the implication graph.

Finally, a frustrated cycle is defined to be a directed cycle
or a directed path which visits both i+ and i−, once, for any
i. One can find all such cycles and paths in a time which is
linear in the number of nodes of the implication graph.

Figure 2 shows the possible frustrated cycles which are
obtained from the implication graph. The figure on the left
shows true frustration. I.e., from the logical implications,

obtained by the LP solution, we have that xi = 0 implies
xi = 1 and xi = 1 implies xi = 0. This means that the
set of local beliefs (which lie on the cycle connecting i+
to i−) are not consistent. Hence it naturally suggests that
there is frustration in the LP solution. The other kind of
frustration, suggested by the remaining figures, is called as
quasi-frustration. The figure in the middle demonstrates that
xi = 1 implies that xi = 0 but not the other way around. This
quasi-frustration implies that there cannot be a global joint
distribution (on all the variable nodes) such that it is consistent
with the local beliefs. Indeed, if it were true, then we know
that it must assign bi(xi = 0) > 0 and bi(xi = 1) > 0. This is
because the variable node i is present in the implication graph
and hence must have a fractional solution for bi(xi). However,
from the implication graph xi = 1 implies xi = 0, hence any
configuration (on all nodes), which has a non-zero probability,
cannot have xi = 1, i.e., bi(x1 = 1) = 0, a contradiction. We

i+

i−

i+

i−

i+

i−

Fig. 2. Figure shows the possible frustrated cycles present in the implication
graph. The first cycle is truly frustrated, since we must have xi = 0 implies
xi = 1 and vice-versa. The remaining two cycles are quasi-frustrated, since
either xi = 0 implies xi = 1 or vice-versa, but not both at the same time.
These cycles are added to the LP and the enhanced decoder is termed LP-
Frustrated Cycles (LP-FC).

remark here that once we have found a frustrated cycle on
the implication graph, one can easily obtain the cycle on the
original graph, by just projecting the nodes on the implication
graph back to the nodes on the original graph. The method in
which we add the frustrated cycle to the LP is illustrated in
the example below.

Example 4 (Triangulation of Frustrated Cycles): Figure 3
shows a cycle (x1, x2, x3, x4, x5, x6, x7, x8) which we add
to the LP as a constraint. Adding the entire belief,
b(x1, x2, . . . , x8), as a constraint, would be expensive
and result in 28 extra variables and constraints amongst
them. Instead we add the maximal cliques of its junc-
tion tree. To do this, we first chordalize or triangulate
the cycle, as shown in the figure 3, into the 6 triangles
given by (x1, x2, x3), (x1, x3, x4), (x1, x4, x5), (x1, x5, x6),
(x1, x6, x7), (x1, x7, x8). These triangles are the maximal
cliques and we add them as constraints to the LP. E.g., we
add bx1x2x3

(x1, x2, x3) for all x1, x2, x3 ∈ {0, 1}. For every
belief that we add to the LP, we add constraints to ensure
consistency with previously added beliefs. E.g., when we add
bx1,x2,x3(x1, x2, x3) and bx1,x3,x4(x1, x3, x4) we introduce the
constraint

∑
x2
bx1,x2,x3(x1, x3) =

∑
x4
bx1,x3,x4

(x1, x3, x4)
for all values of x1, x3. In other words, every clique that we
add to the LP, must be consistent across its intersections.

C. Experiments using Frustrated Cycles

We consider BIAWGNC where the standard deviation
of the noise is denoted by σ. We consider two types of

4

x1

x2

x3

x4

x5

x6
x7

x8

Fig. 3. Figure shows triangulation of the cycle
(x1, x2, x3, x4, x5, x6, x7, x8, x1). The triangles chordalize the cycle
and form the maximal cliques. The details are explained in example 4.

LDPC encoding: (i) regular (3, 4) LDPC ensemble with
design rate equal to 1/4 and the (ii) 155-Tanner code [12].
The 155-Tanner code has a design rate of 2/5. We let the
standard deviation of the noise, σ, take values in the set
{0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20}. We
run 2000 trials for each value of σ. We run experiments for
both the (3, 4)-regular ensemble and the 155-Tanner code. For
the (3, 4)-regular ensemble, in each trial a code is generated
uniformly at random and used for transmission.

Since we are transmitting over a symmetric channel, for the
purpose of performance analysis we can assume that we are
transmitting the all-zero codeword [1]. Under this assumption,
the distribution of the LLRs are given by N (2

σ2 ,
4
σ2). The

generated LLRs are fed to both basic LP and LP-FC decoder.
The LP-FC algorithm is described below. For any decoder, if
the output equals the all-zero codeword, we declare success,
else there is an error. We plot the word error rate (WER) versus
the SNR (Eb/N0) in dB.

LP-FC Decoder:

1) Run the basic LP. Go to step 4.
2) If the output is fractional, find the frustrated

cycle (FC) of the smallest length and add all its
triangles.

3) Rerun the LP.
4) If output is integral, stop else go to 2.

1) Experiments with (3, 4)-regular LDPC ensemble: Fig-
ure 4 shows the performance curve when we use the (3, 4)-
regular ensemble with blocklength 160. The dark curve rep-
resents the performance (averaged over 2000 trials where in
each trial a code and noise realization is picked uniformly at
random) when we use the basic LP decoder. The gray curve
denotes the performance under LP-FC. We remark here that for
each simulation trial, the LP and LP-FC were run on the same
code and noise realization. We observe that there were many
trials where the basic LP decoder failed. However, adding a
small number of cycles to the LP helped in retrieving the
transmitted all-zero codeword. From the figures we observe
that LP-FC performs much better than the basic LP.

Table I demonstrates various quantities for different values
of the SNR for the case when we use the (3, 4)-regular LDPC
ensemble with blocklength 160. The second column shows the
average number of LPs called in the LP-FC algorithm, i.e, the
number of times step 3 is called in the LP-FC algorithm. The

1 2 3 4 510-4

10-3

10-2

10-1

100

0
Eb/N0 (dB)

W
E

R

Basic LP
LP-FC

Fig. 4. The figure shows the performance improvement of LP-FC over the
basic LP. In this experiment (3, 4)-regular LDPC ensemble of blocklength 160
was used. The dark curve depicts the word error rate (WER) performance of
the basic LP and the gray curve shows the performance of the LP-FC.

SNR
(in
dB)

Num.
of
LPs
(avg.)

Non-
zeros
(avg.)
LP
(×104)

Non-
zeros
(avg.)
LP-
FC
(×104)

Non-
zeros
(max)
LP-FC
(×104)

Dim.
for LP
(rows,cols)

Dim. (avg.)
for LP-FC
(rows,cols)

3.93 3 2.6760 2.7028 2.9252 (6490,4920) (6569,4970)
3.46 6 2.6597 2.7190 3.1780 (6458,4896) (6635,5009)
3.01 7 2.6694 2.7471 3.8020 (6477,4910) (6708,5059)
2.59 6 2.6613 2.7312 3.6116 (6461,4899) (6669,5032)
2.18 7 2.6637 2.7514 4.1012 (6466,4902) (6727,5070)
1.79 7 2.6659 2.7403 3.7796 (6470,4905) (6692,5047)
1.43 8 2.6572 2.7483 3.8984 (6453,4893) (6725,5068)

TABLE I
COMPLEXITY COMPARISON OF LP AND LP-FC DECODERS.

remaining columns illustrate the complexity of the extra LPs
which are solved in the LP-FC algorithm. The third and the
sixth column show the number of non-zeros in the constraint
matrix and the dimensions of the constraint matrix when the
basic LP is run. The fourth and the last column show the
average number of non-zero entries in the constraint matrix
and the average dimensions of the of the constraint matrix,
when the LP-FC algorithm is run, respectively. Also shown in
the fifth column is the maximum number of non-zero entries
in any constraint matrix which occurs in the LP-FC algorithm.
Thus, the table demonstrates that the size of the LP, after
adding the frustrated cycles, does not increase by much. Hence
the LP-FC decoder is kept tractable.

We also observe that every cycle we add is a simple cycle,
without any self-intersections.

2) Experiments with 155-Tanner code [12]: We also per-
form experiments with the 155-Tanner code which has 155
variable nodes and 93 check nodes. The experimental set-up
is same as before.

Figure 5 shows the performance curve (averaged over 2000
noise realizations for each value of σ) when we use the 155-
Tanner code. Again, we observe that LP-FC performs much
better than the basic LP.

We also perform experiments at very high SNR for the 155-
Tanner code. This known as the error-floor regime. The error-
floor occurs because of low-weight pseudocodewords which
are fractional, i.e., not codewords. In [18] a pseudocodeword

5

2 3 4 5
10-4

10-3

10-2

10-1

100

Eb/N0 (dB)

W
E

R

Basic LP
LP-FC

Fig. 5. The figure shows the performance improvement of LP-FC over the
basic LP when the 155-Tanner code was used.

search algorithm was used to generate pseudocodewords which
are not codewords. We pick 200 worst pseudocodewords
which have effective weight [4] less than the minimum Ham-
ming distance of 20. Also, all these pseudocodewords will
dominate the WER when SNR becomes very large.

The experiment we perform is as follows. We take the
corresponding noise realizations which gave rise to these 200
pseudocodewords. We run the basic LP on then and confirm
that it fails on all these noise realizations and indeed we
recover the fractional pseudocodewords. On the same noise
realizations, we also run the LP-FC. Remarkably, the LP-
FC is able to recover the correct (all-zero) codeword for all
the 200 worst-case noise realizations. Furthermore, the step 3
in the LP-FC algorithm was just called once. The constraint
matrix for the basic LP is has 51,646 non-zeros entries and a
dimension of (8618, 7006). On the other hand the enhanced LP
has, on an average, 52,676 non-zeros entries and an average
dimension of (8925, 7163). Again, the LP-FC is kept tractable.

IV. DISCUSSION

In this work we present an improved LP decoder, called LP-
FC, based on frustrated cycles. We show that the presence of
frustration in the output of the basic LP solution is the cause
of inconsistency. We add these frustrated cycles as constraints
to the LP, thus enhancing it. We observe empirically that the
LP-FC decoder eliminates the duality gap, in a large number
of cases. Our simulations demonstrate that the LP-FC has a
much better performance compared to the basic LP introduced
in [2].

This approach toward enhancing the basic LP decoder opens
up many interesting research directions. One direction is to
investigate if one can add a frustrated subgraph, which is not
a cycle, to enhance the LP, when the addition of cycles is not
enough to eliminate the duality gap. The reason we choose to
add frustrated cycles, is that as mentioned in Section III-B,
the algorithm for finding such cycles is simple. It is not clear
if there exists simple algorithms to find minimal frustrated
subgraphs.

Recently, improved LP detectors based on frustrated cycles
was also used in [19] for 2DISI channel. One future re-
search direction is to investigate other combinatorial problems

in graphical coding, e.g., minimum pseudocodeword weight
problem, minimum Hamming distance etc.

Another future direction would be to develop distributed,
i.e., message-passing, versions for the LP-FC.

V. ACKNOWLEDGMENTS

Our work at LANL was carried out under the auspices
of the National Nuclear Security Administration of the U.S.
Department of Energy at Los Alamos National Laboratory
under Contract No. DE-AC52-06NA25396. SK acknowledges
support of NMC via the NSF collaborative grant CCF-0829945
on “Harnessing Statistical Physics for Computing and Com-
munications.”

REFERENCES

[1] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, 2008.

[2] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear pro-
gramming to decode binary linear codes,” IEEE Trans. Inform. Theory,
vol. 51, no. 3, Mar. 2005.

[3] J. Feldman, “Decoding error-correcting codes via linear programming,”
2003, phD dissertation.

[4] R. Kötter and P. O. Vontobel, “Graph covers and iterative decoding
of finite-length codes,” in Proc. of the Int. Conf. on Turbo Codes and
Related Topics, Brest, France, Sept. 1–5, 2003, pp. 75–82.

[5] C. Daskalakis, A. G. Dimakis, R. M. Karp, and M. J. Wainwright,
“Probabilistic analysis of linear programming decoding,” IEEE Trans.
Inform. Theory, vol. 54, no. 8, pp. 3565–3578, Aug. 2008.

[6] D. Burshtein and I. Goldenberg, “Improved linear programming decod-
ing and bounds on the minimum distance of LDPC codes,” in Proc. of
the IEEE Inform. Theory Workshop, Dublin, Ireland, Aug. 2010.

[7] M.-H. Taghavi and P. Siegel, “Adaptive methods for linear programming
decoding,” IEEE Trans. Inform. Theory, vol. 54, no. 12, pp. 5396–5410,
2006.

[8] A. Dimakis, A. Gohari, and M. Wainwright, “Guessing facets: Polytope
structure and improved lp decoder,” IEEE Trans. Inform. Theory, vol. 55,
no. 8, pp. 3479–3487, 2009.

[9] S. Draper, J. Yedidia, and Y. Wang, “Ml decoding via mixed-integer
adaptive linear programming,” in Proc. of the IEEE Int. Symposium on
Inform. Theory, June 2007, pp. 1656–1660.

[10] M. Chertkov, “Reducing the error floor,” in Proc. of the IEEE Inform.
Theory Workshop, Sept. 2007, pp. 230–235.

[11] K. Yang, J. Feldman, and X. Wang, “Nonlinear programming approaches
to decoding low-density parity-check codes,” IEEE J. Sel. Area. Com-
mun., vol. 24, no. 8, pp. 1603–1613, Aug. 2006.

[12] R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured
ldpc codes,” in Proc. of ICSTA, Ambleside, England, 2001.

[13] J. Johnson, “Convex relaxation methods for graphical models: La-
grangian and maximum entropy approaches,” 2008, PhD Thesis.

[14] J. Johnson, D. Malioutov, and A. Willsky, “Lagrangian relaxation for
map estimation in graphical models,” in Proc. of the Allerton Conf. on
Commun., Control, and Computing, Sept. 2007.

[15] D. Sontag and T. Jaakkola, “New outer bounds on the marginal poly-
tope,” in Neural Information Processing Systems (NIPS), Dec. 2007.

[16] N. Komodakis, N.Paragios, and G. Tziritas, “MRF energy minimization
and beyond via dual decomposition,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, (in press).

[17] B. Aspvall, M. Plass, and R. Tarjan, “A linear-time algorithm for
testing the truth of certain quantified boolean formulas,” in Information
Processing Letters, 1979, 8(3).

[18] M. Chertkov and M. Stepanov, “An Efficient Pseudocodeword Search
Algorithm for Linear Programming Decoding of LDPC Codes,” IEEE
Trans. Inform. Theory, vol. 54, no. 4, Apr. 2008.

[19] S. Kudekar, J. K. Johnson, and M. Chertkov, “Linear programming based
receivers for detection of two-dimensional intersymbol interference
channels,” in Proc. of the IEEE Int. Symposium on Inform. Theory, July
2011.

